Instead of the traditional expanding brakes that press outward against a circular drum, disc brake systems utilize a disc (rotor) with brake pads positioned on either side of it. An easily-seen analogy is the hand brake arrangement on a bicycle. The pads squeeze onto the rim of the bike wheel, slowing its motion. Automobile disc brakes use the identical principle but apply the braking effort to a separate disc instead of the wheel.
The disc (rotor) is a casting, usually equipped with cooling fins between the two braking surfaces. This enables air to circulate between the braking surfaces making them less sensitive to heat buildup and more resistant to fade. Dirt and water do not drastically affect braking action since contaminants are thrown off by the centrifugal action of the rotor or scraped off the by the pads. Also, the equal clamping action of the two brake pads tends to ensure uniform, straight line stops. Disc brakes are inherently self-adjusting. There are three general types of disc brake:
The fixed caliper design uses two pistons mounted on either side of the rotor (in each side of the caliper). The caliper is mounted rigidly and does not move.
The sliding and floating designs are quite similar. In fact, these two types are often lumped together. In both designs, the pad on the inside of the rotor is moved into contact with the rotor by hydraulic force. The caliper, which is not held in a fixed position, moves slightly, bringing the outside pad into contact with the rotor. There are various methods of attaching floating calipers. Some pivot at the bottom or top, and some slide on mounting bolts. In any event, the end result is the same.