Now that the engine block and all of its components are clean, it's time to inspect them for wear and/or damage. To accurately inspect them, you will need some specialized tools:
If you do not have access to the proper tools, you may want to bring the components to a shop that does.
Generally, you shouldn't expect cracks in the engine block or its components unless it was known to leak, consume or mix engine fluids, it was severely overheated, or there was evidence of bad bearings and/or crankshaft damage. A visual inspection should be performed on all of the components, but just because you don't see a crack does not mean it is not there. Some more reliable methods for inspecting for cracks include Magnaflux, a magnetic process or Zyglo, a dye penetrant. Magnafluxis used only on ferrous metal (cast iron). Zyglouses a spray on fluorescent mixture along with a black light to reveal the cracks. It is strongly recommended to have your engine block checked professionally for cracks, especially if the engine was known to have overheated and/or leaked or consumed coolant. Contact a local shop for availability and pricing of these services.
Remove the main bearing caps and, if still installed, the main bearing inserts. Inspect all of the main bearing saddles and caps for damage, burrs or high spots. If damage is found, and it is caused from a spun main bearing, the block will need to be align-bored or, if severe enough, replacement. Any burrs or high spots should be carefully removed with a metal file.
Place a straightedge on the bearing saddles, in the engine block, along the centerline of the crankshaft. If any clearance exists between the straightedge and the saddles, the block must be align-bored.
Align-boring consists of machining the main bearing saddles and caps by means of a flycutter that runs through the bearing saddles.
The top of the engine block where the cylinder head mounts is called the deck. Insure that the deck surface is clean of dirt, carbon deposits and old gasket material. Place a straightedge across the surface of the deck along its centerline and, using feeler gauges, check the clearance along several points. Repeat the checking procedure with the straightedge placed along both diagonals of the deck surface. If the reading exceeds 0.003 in. (0.076mm) within a 6.0 in. (15.2cm) span, or 0.006 in. (0.152mm) over the total length of the deck, it must be machined.
The cylinder bores house the pistons and are slightly larger than the pistons themselves. A common piston-to-bore clearance is 0.0015–0.0025 in. (0.0381mm–0.0635mm). Inspect and measure the cylinder bores. The bore should be checked for out-of-roundness, taper and size. The results of this inspection will determine whether the cylinder can be used in its existing size and condition, or a rebore to the next oversize is required (or in the case of removable sleeves, have replacements installed).
Fig. 1: Use a telescoping gauge to measure the
cylinder bore diameter — take several readings
within the same bore
|
The amount of cylinder wall wear is always greater at the top of the cylinder than at the bottom. This wear is known as taper. Any cylinder that has a taper of 0.0012 in. (0.305mm) or more, must be rebored. Measurements are taken at a number of positions in each cylinder: at the top, middle and bottom and at two points at each position; that is, at a point 90 degrees from the crankshaft centerline, as well as a point parallel to the crankshaft centerline. The measurements are made with either a special dial indicator or a telescopic gauge and micrometer. If the necessary precision tools to check the bore are not available, take the block to a machine shop and have them mike it. Also if you don't have the tools to check the cylinder bores, chances are you will not have the necessary devices to check the pistons, connecting rods and crankshaft. Take these components with you and save yourself an extra trip.
For our procedures, we will use a telescopic gauge and a micrometer. You will need one of each, with a measuring range which covers your cylinder bore size.
NOTE: Your first two readings will be at the top of the cylinder bore, then proceed to the middle and finally the bottom, making a total of six measurements.
The difference between these measurements will tell you all about the wear in your cylinders. The measurements which were taken 90 degrees from the crankshaft centerline will always reflect the most wear. That is because at this position is where the engine power presses the piston against the cylinder bore the hardest. This is known as thrust wear. Take your top, 90 degree measurement and compare it to your bottom, 90 degree measurement. The difference between them is the taper. When you measure your pistons, you will compare these readings to your piston sizes and determine piston-to-wall clearance.
Inspect the crankshaft for visible signs of wear or damage. All of the journals should be perfectly round and smooth. Slight scores are normal for a used crankshaft, but you should hardly feel them with your fingernail. When measuring the crankshaft with a micrometer, you will take readings at the front and rear of each journal, then turn the micrometer 90 degrees and take two more readings, front and rear. The difference between the front-to-rear readings is the journal taper and the first-to-90 degree reading is the out-of-round measurement. Generally, there should be no taper or out-of-roundness found, however, up to 0.0005 in. (0.0127mm) for either can be overlooked. Also, the readings should fall within the factory specifications for journal diameters.
If the crankshaft journals fall within specifications, it is recommended that it be polished before being returned to service. Polishing the crankshaft insures that any minor burrs or high spots are smoothed, thereby reducing the chance of scoring the new bearings.
The piston should be visually inspected for any signs of cracking or burning (caused by hot spots or detonation), and scuffing or excessive wear on the skirts. The wristpin attaches the piston to the connecting rod. The piston should move freely on the wrist pin, both sliding and pivoting. Grasp the connecting rod securely, or mount it in a vise, and try to rock the piston back and forth along the centerline of the wristpin. There should not be any excessive play evident between the piston and the pin. If there are C-clips retaining the pin in the piston then you have wrist pin bushings in the rods. There should not be any excessive play between the wrist pin and the rod bushing. Normal clearance for the wrist pin is approx. 0.001–0.002 in. (0.025mm–0.051mm).
Fig. 2: Measure the piston's outer diameter,
perpendicular to the wrist pin, with a micrometer
|
Use a micrometer and measure the diameter of the piston, perpendicular to the wrist pin, on the skirt. Compare the reading to its original cylinder measurement obtained earlier. The difference between the two readings is the piston-to-wall clearance. If the clearance is within specifications, the piston may be used as is. If the piston is out of specification, but the bore is not, you will need a new piston. If both are out of specification, you will need the cylinder rebored and oversize pistons installed. Generally if two or more pistons/bores are out of specification, it is best to rebore the entire block and purchase a complete set of oversize pistons.
You should have the connecting rod checked for straightness at a machine shop. If the connecting rod is bent, it will unevenly wear the bearing and piston, as well as place greater stress on these components. Any bent or twisted connecting rods must be replaced. If the rods are straight and the wrist pin clearance is within specifications, then only the bearing end of the rod need be checked. Place the connecting rod into a vice, with the bearing inserts in place, install the cap to the rod and torque the fasteners to specifications. Use a telescoping gauge and carefully measure the inside diameter of the bearings. Compare this reading to the rods original crankshaft journal diameter measurement. The difference is the oil clearance. If the oil clearance is not within specifications, install new bearings in the rod and take another measurement. If the clearance is still out of specifications, and the crankshaft is not, the rod will need to be reconditioned by a machine shop.
NOTE: You can also use Plastigageto check the bearing clearances. The assembling section has complete instructions on its use.
Inspect the camshaft and lifters/followers as described earlier in this section.
All of the engine bearings should be visually inspected for wear and/or damage. The bearing should look evenly worn all around with no deep scores or pits. If the bearing is severely worn, scored, pitted or heat blued, then the bearing, and the components that use it, should be brought to a machine shop for inspection. Full-circle bearings (used on most camshafts, auxiliary shafts, balance shafts, etc.) require specialized tools for removal and installation, and should be brought to a machine shop for service.
NOTE: The oil pump is responsible for providing constant lubrication to the whole engine and so it is recommended that a new oil pump be installed when rebuilding the engine.
Completely disassemble the oil pump and thoroughly clean all of the components. Inspect the oil pump gears and housing for wear and/or damage. Insure that the pressure relief valve operates properly and there is no binding or sticking due to varnish or debris. If all of the parts are in proper working condition, lubricate the gears and relief valve, and assemble the pump.